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Effects of Particle Shape on the Effective Permittivity
of Composite Materials With Measurements
for Lattices of Cubes
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Abstract—The effects of inclusion shape on the quasi-static ef- plex-shaped inclusions discussed in this paper, we will employ
fective permittivity of a two-phase periodic composite material are  another computational electromagnetics technique. We note that

discussed in this paper. The lattice is formed from complex-shaped g ¢, methods have been proposed for computing effective ma-
conducting inclusions suspended in a host medium. The effective

permittivity is computed using an accurate moment-method-based tefial COHStant_S for complex-shaped ir_‘C|U5i0n5_ [_2]3 [4], but the
technique. Numerical results are presented for a variety of particle effects of particle shape on the effective permittivity have not
shapes including circular, square, and “rounded square” cylinders peen illustrated.

(two dimensional) as well as lattices of spheres and cubes (three In this paper, we will focus on the effects of inclusion
dimensional). It was found that among these shapes, lattices . . . o I
of square cylinders and cubes produced nearly the minimal shape on the quasi-static effective permittivity of an infinite

polarization per unit volume possible (a la Maxwell/Maxwell lattice containing identical conducting particles. This will
Garnett). It appears that the strong mutual interaction between pe performed both for lattices of two-dimensional (2-D) and

edges and corners of these particles is responsible for this eﬁeCt'three-dimenSiona| (3-D) particles. This accurate numerical
That is, it was observed that the mutual interaction between '

square cylinders and cubes caused a decrease in their dipole"’m""lySIS IS Qccomp“.Shed using a simple methoq of momgnts
moments and, hence, the effective permittivity, which is opposite (MM) technique. With this method, the electric potential
to the usual expectation from mutual interaction between circular  integral equation is first constructed using the surface equiv-
cylinders and spheres. Experimental verification of this effect 5jence theorem. We then use the MM to solve for the charge
is provided by quasi-static conductivity measurements using an . . . . . . .
apparatus that simulates an infinite lattice of highly conducting d'St.”bUtmn on .th.e mCIUS_'On_S for a unlfor.m, _bUt otherwise
cubes. The methodology and results described in this work can be arbitrary, electric field excitation. The electric dipole moments
used to design certain microwave composite materials composedof the inclusions are then determined from which the effective
of periodic conductor/dielectric composites. permittivity of the composite material is calculated through an

Index Terms—Complex composite materials, conductivity, di- appropriate macroscopic model.
electric enhancement and reduction, effective permittivity, quasi-
static conductivity measurements.

Il. INTEGRAL EQUATION FORMULATION AND
I. INTRODUCTION DiPOLE MOMENT SOLUTION

ARIOUS applications have been proposed for composite Consider an infinite lattice of conducting particles suspended
materials constructed of conducting or dielectric incluin a host medium with permittivity, as shown in Fig. 1(a). This
sions in a host medium. For example, applications for high-dattice is illuminated by a uniform, but otherwise arbitrary, inci-
electric thin-film capacitors and substrates have been suggestedt electric fieldE™™. Each unit cell contains one charge-neu-
[1], [2]. In both cases, an accurate quasi-static effective péral conducting particle with a possibly very complicated shape.
mittivity is desirable for these materials. However, the analyfhe lattice, however, is assumed to possess enough symmetry
ical analysis of these, and other, composite materials is stricsg it is effectively isotropic.
limited because the scattering and mutual interaction betweerfccording to the surface equivalence theorem [5], an equiv-
the inclusions are very complicated to describe. Only a fesent electrostatic problem can be constructed where an equiv-
canonical shapes can be solved accurately using semiana®@nt surface charge density exists on each inclusiofy as
ical techniques such as tHematrix method [3]. For the com- shown in Fig. 1(b). The scattered potential from these equiva-
lent sources plus the incident potential produce the total poten-
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" " where
b i D
s, P s 5 Lo, = ——— Z / nR,,,dl’ (5)
© 444 2mey, —Jr.
ducto NullE |+ . .
conduetor 6 Jt and «,, are the unknown surface charge density coefficients.
E™ Eie The elements in (5) are evaluated at the centroid of segment
= unit cell number_—+"" o ol m on C{ and the infinite summations have been truncated to

M cylinders. As will be shown in Section IV, this simple pulse-
expansion-point-match MM solution can provide very accurate
quasi-statie,. g calculations for complex composite materials.
The surface charge density of 3-D particles in an infinite lat-
tice can be computed similarly except for the use of triangular

conductor

\
0l

o - patches in the moment method solution. The matrix equation in
this case has the same form as (4), except, among other things,
@) () (5) becomes
Fig. 1. Geometry of the original problem—containing an infinite lattice of M
conducting particles immersed in a uniform quasi-static electric field—and 1 1 ,
the corresponding (external) equivalent problem used in the MM solution. Zynn = —4 Z R ds (6)
(a) Original problem. (b) Equivalent problem. TEY i=1 "% mn

wheresS,, is the surface of thath flat triangular patch.
evaluated at an observation pOi‘I’lltlocated on SUrfac@f just Lasﬂy' oncep, has been accurate|y Computed for either 2-D
inside particle 1 must equél, ; as or 3-D lattices, the electric dipole momanbf each particle can
be determined from the numerical solution to (4) as [7], [8]

(I)inC(rl) + Z (I)S(r1|507 ps) = (I)c, 15 r; € Cl_ (1)

P 7{ psv’'dl’, 2-D
C;
where the first term in (1) is the incident potentiakatand the P= # por' ds'. 3-D. )
second is the scattered potential due to all equivalent sources ’
(particles) in the lattice. In addition, we require that &
j{ podll =0, 2-D [ll. EFFECTIVE PERMITTIVITY COMPUTATION
G @ A suitable macroscopic model must be chosen in order to
ﬂ ' ) compute the effective permittivity of the infinite lattice. The
psds’ =0, 3-D . . o . L
model applied here is that of an arbitrarily large dielectric cir-
51 cular cylinder (2-D) or dielectric sphere (3-D) of relative permit-

is enforced so that all particles remain charge neutral, as H¥ltY & <t illuminated by the same uniform electric field as in
sumed earlier. the MM solution [7]. In both instances, the polarization vector

We will use the MM to solve (1) and (2) for, in both lattices is unifprm throughout the objects, which _is 'Fh_e desi_red outcome
of 2-D and 3-D particles. For a 2-D geometry, the inclusions f#re (in the macroscopic sense) for the infinite lattices.
the lattice are infinitely long, parallel cylinders with possibly a !N the case of a 2-D infinite lattice, the effective relative per-
complicated cross-sectional shape. The scattered potential pRéifivity is related to the electric dipole momeptof every
duced byp, in a 2-D homogeneous spags is [6] cylinder through the expression [9]

N -
29 'S, (8)

- _p
1 229 EmC S,

1 =
Ble )=~ § pmRd. @ o = 142
<

wheresS. is the cross-sectional area of one unit cell anslithe

A pulse-expansion-point-match moment method technique Wggo e moment of each cylinder. Similarly, o for 3-D lattices

used to solve this integral equation where the contour of €36f1,,icles illuminated by a uniform electric field is [7]
cylinder was approximated by a number of straight segments

L, (n=1,..., N)each of lengtH,. P T BT ©)
After pulse expansion of the charge density and then point Ereft = 1— L
matching the discretized integral equation at the centroid of each ) ) - ‘
segment, we can express (1) and (2) in the matrix form ~ WhereV% is the volume of a unit cell.
[Zn] v [1]NX1} <[an]NX1 ) <[<I>i’“‘3(r1)],\rXl ) IV. RESULTS AND DISCUSSION
Tnlixn 0 D1 B 0 Before presenting,. . data illustrating the effects of particle

(4) shape, we willfirst subject this solution methodology to verifica-
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Fig. 2. Computed .. .ir for three 2-D conducting particle shapes (circle, rounded square, and square cylinders). Also showR-anatitve results for circular
conducting cylinders [9]. The Maxwell/Maxwell Garnett (MG) results indicate the lower bound for the static permittivity of these three compeséis ma
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Fig. 3. Computed . .. for 3-D lattices of conducting spheres and conducting cubes. Our MM solution for conducting spheres is compared with data from [10].
Note that the verticat.. . scales for the sphere and cube data are much different.

tion. In Figs. 2 and 3, the computed .¢ for conducting circular the maximum number of particles truncated from the infinite lat-
cylinders and spheres, respectively, are compared with known#ce, M, was 177 in 2-D and 125 in 3-D. Actually, only within a
curateresults(i.e.,oursemianalytigamatrixresults[7],[9]and smallrange of close to the maximum do these “larg¥”andM
those of McPhedrargt al.[10]). In both cases, the backgroundigures need to be employed. Otherwise, the required number of
is free spacés;, = &¢). The conducting circular cylinders in basis functions and the number of particles in the truncated lattice
Fig. 2 form a 2-D square lattice while the conducting spheres@an be much lower.

Fig. 3 form a 3-D simple cubic lattice. The excellent agreementAlso shown in Figs. 2 and 3 arg. . for lattices of con-

in these two comparisons serves as a verification of our methaukcting square cylinders (2-D) and cubes (3-D) computed using
in that the 2-D MM andl’-matrix results are very close for allour MM-based technique discussed earlier as well as the MG
volumefractions (lessthanapproximately 0.75% variation) whifgedictions [11, Arts. 314 and 430]. Té, M ande, parame-

the 3-D MM results generally vary by less than 2% from thogers were unchanged from the previous 2-D example whereas for
of McPhedranet al. (at the maximal volume fraction the varia-the cube results up t&y = 3758 basis and/ = 729 particles
tion is 3.1%). The MM results were generated using upfte=  were needed near the maximal volume fraction (but consider-
360 basis functions in 2-D and 1968 basis functions in 3-D whibly smaller¥N and M otherwise).
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Fig. 4. Surface charge distribution on square conducting cylinders for various volume frictoging from 0.1 to 0.9. The incident field hag™ = 1 V/m
and¢i™c = 90°.
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Fig. 5. Ratio of electric dipole moments in the directionksf° with mutual coupling £...) and without mutual couplingp(...) included between particles.
The incident field hagg™»c = 1 V/m and¢™c = 90°.

Surprisingly, it is observed thaf .y for the square cylinders  The coincidence of the square cylinder data in Fig. 2 (and to
in Fig. 2 nearly exactly coincides with the MG curve regarda lesser degree in the cube data of Fig. 3) might lead one to con-
less of the volume fraction, which can reach a maximum ofdude that there is little mutual interaction between the particles.
for this lattice. In Fig. 3 it is observed that . for the simple This is not true, however. To illustrate this, shown in Fig. 4 is
cubic lattice of cubes is very close to the MG curve, though ntite surface charge density on a square conducting cylinder over
as close as the 2-D lattice of square cylinders. Lattices of dielecwide range of volume fractiofi At low volume fraction =
tric particles rather than conducting ones also produced simifaf) the mutual interaction between the inclusions is small and
closeness im,. . [8]. The MG formula is often used to predictthe edge effect is very prominent in Fig. 4 and largely dominates
the static or quasi-static effective permittivity of spherical pathe p, behavior. When the volume fraction becomes very large
ticles with little mutual interaction. However, it is also known(f = 0.9) and the mutual interaction is significant, however, the
that the MG solution is the lower bound for the static effectivimteraction of edges (and corners in 3-D) between adjacent par-
permittivity of any isotropic two-phase mixture given that théicles will combine to reduce these edge effects, which is clearly
inclusion permittivity is larger than that of the host [12]. shown in Fig. 4.
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In Fig. 5 we comput@. /pwoc Which is the ratio of the elec-
tric dipole moments of particles in a 2-D square lattice wher
including mutual coupling between particles,() and without
(pwoc)- This family of curves was generated for the class of
cylinders we define as the “rounded square” cylinder shown ir
the key of Fig. 2. In Fig. 5, various ratidga are chosen from
one to zero and the ratj@,./pwoc is plotted up to the maximal
f possible for that particle shape.

All of the curves in Fig. 5 enumerate how the particle dipole
moments are affected by mutual coupling as a function o
volume fraction. It is apparent from this figure that for circular
cylinders, the ratiq,./pwoc Starts at one and monotonically
mc_reases ag mcreasgs. Conversely, for square cylinders thPlg. 6. Photograph of the conducting cube lattice apparatus for measuring
ratio always monotonically decreases from one. Therefore, Wgsi-static effective conductivity. The upper and lower plates as well as the
see that the circular cross section always causes a “dielectrige are brass. The four-sided box is Lexan. For sample #2 shown above, the
enhancement,” which is a familiar conclusion, since the raﬁg)easured volume fraction wgis= 0.1952+ 0.0005, as listed in Table I.
Dwe/Pwoe 1S greater than one for all volume fractions. For

the square cross section, however, there is only a decrease in TABLE |

R : EASURED VOLUME FRACTION f AND EFFECTIVE QUASI-STATIC RELATIVE
Pwe/Pwoc @S [ increases. Consequently, rather that Observmgcl‘}ofNDucnvm O, orc AT 80 kHZI{OR THECUBE APF?ARATUSSHOWN IN FIG. 6.

dielectric enhancement as with circular cylinders, we 0bServere AveracES AND UNCERTAINTIES ARE THERESULT OF TEN SEPARATE
for square cylinders a “dielectric reduction” due to mutual MEASUREMENTS FORf AND 16 SEPARATE MEASUREMENTS FORT ., oi¢
coupling. This mutual coupling is so strong that the minimal

amount of polarization per unit volume is attained since in Sample # [ (x100)° O eft
Fig. 2,¢,. i is equal to the MG results fdr/a = 0. 1 9.78 + 0.04 1.40 + 0.01
For other rounded-square cylinder shapes, the data in Fig. 5 2 19.52 = 0.05 1.88 £0.02
first show a decrease ji,./pwoc at low f and then an increase 3 29.31 + 0.08 2.46 + 0.03
as f approaches its maximum. At certaji this ratio can be 4 39.09 +0.10 3.21 +0.03
uniFy (for example, see the/a = 0.75 and Q.5 curves) indi.— 5 48.85+0.12 4214005
patlng that the.dlpole moment at these spemal volume fractions 6 58.65% 0.15 5.67+0.08
is the same with or without mutual coupling. !\leyertheless, we 7 68.42 4017 709+ 0.11
have observed that the surface charge density is very different
with and without mutual coupling, as expected. 8 78.19+0.18 124202
The last observation from Fig. 5 is thatductionof the par- 9 88.14£0.20 240£0.5
ticle dipole moment with respect to the noninteraction solu- 10 93.04+0.27 4Ll 11
tion is smaller for all rounded-square cylinders compared to the 11 95.6£0.3 67.2£2.1

square 62/_@ = O): anseque_ntlya;,,7 off is_ then larger than the .« F=V./Vy, then|df| = |dV./Va| + [VodVy/ V2| wheredV =
MG solution, which is also illustrated in thga =2/3and 1 v (y1/1 4 aw/w +dH/H), V = LWH, V. is the brass cube volume,
curves in Fig. 2, for example. andV; is the empty Lexan box volume.

V. MEASUREMENT OFEFFECTIVE CONDUCTIVITY Circuit model of

R apparatus with cube.
The dielectric reduction afforded by interacting particle edges M /

and corners reported in the last section is an intriguing phe- L +

nomenon and one that, to our knowledge, has not been pre- + ,,f’ C, i

viously recorded in the literature. To provide additional evi- '
dence for this phenomenon, we have constructed the measure *s C)

ment apparatus shown in Fig. 6, which is used to measure the - N
relative quasi-static conductivity for a simple cubic lattice of
highly conductive cubes. (For quasi-static comparisons, the rel-
ative _eﬁeCti\_/e CondUCtiVity_and permittiVity_ W"_l be equiValentFi . 7. Equivalent quasi-static circuit model for the experimental
quantities since the electric scalar potential in both problemgasurements of,. .r using the apparatus in Fig. 6. The effects of the
satisfies Laplace’s equation with similar boundary conditiori%ass plates, brass cube, and Lexan box are modeled by the series combination
[13].) The top and bottom plates shown in the photograph A and Ry

made from brass while the box is made from Lexan. When

the box is filled completely with a moderately conductive fluid exan box—being essentially a honconductor—impasen

and with an applied voltage between the two brass plates, thbseindary conditions on the potential. Consequently, the inte-
two surfaces imposedd boundary conditions on the electro-ior of the apparatus in Fig. 6 forms one-eighth of a unit cell in
static scalar potential interior to the apparatus. Conversely, theimple cubic lattice. Such an apparatus is similar to that used

\
)
\
.
.
Py
!
Pl
1

!

;
I
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Fig. 8. Predicted quasi-static effective permittivity and measured effective conductivity for a simple cubic lattice of conducting cubes.urbmergasvere
performed at 80 kHz. Error bars indicate one standard deviation indaotlk and volume fraction.

by McKenzieet al.in their measurements for lattices of spheresonductivity of the lattice of conducting cubes (relative to the

[14]. conductivity of the fluid inside the box) as

Eleven Lexan boxes were constructed, each of different size
to vary the volume fraction of the lattice, while using only one Orog = M (11)
high-precision brass cube. The resulting measured volume frac- ’ Rp, cube

tions of the 11 samples are listed in Table I. Highly precise mril— - . .
S he results of these conductivity measurements are listed in
chining of the brass cube and plate faces as well as the Lexan

- ) able 1. The average and standard deviation of these measure-
boxes (within a few thousandths of an inch) was necessary {0 :
. . . . .~ “ments are the result of 16 measurements each separated by a dis-
achieve the small deviations in volume fraction as shown in this . . .
- . . assembly of the apparatus and using diffefénvalues ranging
table (as well as achieving a watertight fit). For example, t &m 50 to 5000
brass cube was found to have dimensions 1.28%.0006 in,

1.984- 0.0006 in, and 1.98% 0.0013 in, which were obtained - dditionally, these measured. . are plotted in Fig. 8. Two
) . other curves are also shown in this figure. These arethe
from ten measurements for each of the three dimensions. ’

. o i redicted using our MM solution and the MG solution as shown
The equivalent low-frequency circuit model for this apparatus

is shown in Fig. 7. When filled with water and the function genr_Jrewoust in Fig. 3. The curve of our computed ¢ passes

. through all of the error boxes centered at each measurement

erator attached to the two plates, the apparatus electrically ap- _—
. . . ' . point for o,. o, thus confirming the accuracy of our method for

pears as a capacit6fy, in series with a resistand@;,. For our ’

measurements, the sinusoidal frequency 80 kHz was choseﬁ?mpuung effective permittivity for lattices of complex-shaped

fticles described in Sections Il and il
be high enough that. = 1/wC, <« R, + Ry, sothatthere was particles described in Sections 1l an )
no appreciable phase shiftlfz, andV;. These capacitive effects
were actually only noticeable at high volume fraction where the
top of the cube was very close to the plate. Such a frequencyThe effects of inclusion shape on the quasi-static effective
also avoids possible frequency variationsijn.g as reported in permittivity of periodic composites containing complex-shaped
[14] and [15]. conducting particles have been investigated using a simple and

The effective conductivity of the lattice is determined fronaccurate moment method based technique. The numerical re-
the ratio of two measurements Bf;, . In the first case, the cube sults showed that, although large mutual interaction exists be-
is removed from the box, the box is filled with tap water, antiveen patrticles, lattices of square cylinders (2-D), and cubes
the voltageVy .mpty IS measured. The effective resistance ca(8-D) produce nearly the minimal amount of polarization per

VI. CONCLUSION

be easily computed as unit volume. Consequently, such complex composite materials
can be designed with good accuracy using the simple MG for-

Ry mula even though there may exist extremely large coupling be-

Ri, empty = VS/VTW (10) tween the inclusions. To our knowledge, this interesting phe-

nomenon has not been previously reported in the literature.
Next, the cube is inserted, the box is filled again with tap water, This methodology could be applied to microwave structures
and the new effective load resistan€g ... is computed from (high dielectric capacitors, substrates) where the quasi-static ef-
(10). Forming the ratio of these quantities yields the effectiviective permittivity of composites must be accurately known.
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Our analysis was verified experimentally with measurements ofi5] R. E. Meredith and C. W. Tobias, “Resistance to potential flow through
the effective conductivity from an apparatus that simulates an 2 cubical array of spheresl-Appl. Phys.vol. 31, no. 7, pp. 1270-1273,
infinite simple cubic lattice of highly conducting cubes. '

The assistance of T. Fleming with the design and co
struction of the experimental apparatus of Fig. 6 is grateful
acknowledged.
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