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Effects of Particle Shape on the Effective Permittivity
of Composite Materials With Measurements

for Lattices of Cubes
Keith W. Whites, Senior Member, IEEE,and Feng Wu

Abstract—The effects of inclusion shape on the quasi-static ef-
fective permittivity of a two-phase periodic composite material are
discussed in this paper. The lattice is formed from complex-shaped
conducting inclusions suspended in a host medium. The effective
permittivity is computed using an accurate moment-method-based
technique. Numerical results are presented for a variety of particle
shapes including circular, square, and “rounded square” cylinders
(two dimensional) as well as lattices of spheres and cubes (three
dimensional). It was found that among these shapes, lattices
of square cylinders and cubes produced nearly the minimal
polarization per unit volume possible (à la Maxwell/Maxwell
Garnett). It appears that the strong mutual interaction between
edges and corners of these particles is responsible for this effect.
That is, it was observed that the mutual interaction between
square cylinders and cubes caused a decrease in their dipole
moments and, hence, the effective permittivity, which is opposite
to the usual expectation from mutual interaction between circular
cylinders and spheres. Experimental verification of this effect
is provided by quasi-static conductivity measurements using an
apparatus that simulates an infinite lattice of highly conducting
cubes. The methodology and results described in this work can be
used to design certain microwave composite materials composed
of periodic conductor/dielectric composites.

Index Terms—Complex composite materials, conductivity, di-
electric enhancement and reduction, effective permittivity, quasi-
static conductivity measurements.

I. INTRODUCTION

V ARIOUS applications have been proposed for composite
materials constructed of conducting or dielectric inclu-

sions in a host medium. For example, applications for high-di-
electric thin-film capacitors and substrates have been suggested
[1], [2]. In both cases, an accurate quasi-static effective per-
mittivity is desirable for these materials. However, the analyt-
ical analysis of these, and other, composite materials is strictly
limited because the scattering and mutual interaction between
the inclusions are very complicated to describe. Only a few
canonical shapes can be solved accurately using semianalyt-
ical techniques such as the-matrix method [3]. For the com-
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plex-shaped inclusions discussed in this paper, we will employ
another computational electromagnetics technique. We note that
a few methods have been proposed for computing effective ma-
terial constants for complex-shaped inclusions [2], [4], but the
effects of particle shape on the effective permittivity have not
been illustrated.

In this paper, we will focus on the effects of inclusion
shape on the quasi-static effective permittivity of an infinite
lattice containing identical conducting particles. This will
be performed both for lattices of two-dimensional (2-D) and
three-dimensional (3-D) particles. This accurate numerical
analysis is accomplished using a simple method of moments
(MM) technique. With this method, the electric potential
integral equation is first constructed using the surface equiv-
alence theorem. We then use the MM to solve for the charge
distribution on the inclusions for a uniform, but otherwise
arbitrary, electric field excitation. The electric dipole moments
of the inclusions are then determined from which the effective
permittivity of the composite material is calculated through an
appropriate macroscopic model.

II. I NTEGRAL EQUATION FORMULATION AND

DIPOLE MOMENT SOLUTION

Consider an infinite lattice of conducting particles suspended
in a host medium with permittivity as shown in Fig. 1(a). This
lattice is illuminated by a uniform, but otherwise arbitrary, inci-
dent electric field . Each unit cell contains one charge-neu-
tral conducting particle with a possibly very complicated shape.
The lattice, however, is assumed to possess enough symmetry
so it is effectively isotropic.

According to the surface equivalence theorem [5], an equiv-
alent electrostatic problem can be constructed where an equiv-
alent surface charge density exists on each inclusion, as
shown in Fig. 1(b). The scattered potential from these equiva-
lent sources plus the incident potential produce the total poten-
tial in the region exterior to all particles and a constant
potential within particle . Due to the in-
finite nature of the geometry and the uniform , on each
particle must be identical. Furthermore, since the interior null
field regions can be replaced by any material without disturbing
the value 0, we will replace them with .

To compute , we apply the constant potential boundary con-
dition in the equivalent problem. That is, the total potential when
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(a) (b)

Fig. 1. Geometry of the original problem—containing an infinite lattice of
conducting particles immersed in a uniform quasi-static electric field—and
the corresponding (external) equivalent problem used in the MM solution.
(a) Original problem. (b) Equivalent problem.

evaluated at an observation pointlocated on surface just
inside particle 1 must equal as

(1)

where the first term in (1) is the incident potential atand the
second is the scattered potential due to all equivalent sources
(particles) in the lattice. In addition, we require that

2-D

3-D
(2)

is enforced so that all particles remain charge neutral, as as-
sumed earlier.

We will use the MM to solve (1) and (2) for in both lattices
of 2-D and 3-D particles. For a 2-D geometry, the inclusions in
the lattice are infinitely long, parallel cylinders with possibly a
complicated cross-sectional shape. The scattered potential pro-
duced by in a 2-D homogeneous space is [6]

(3)

A pulse-expansion-point-match moment method technique was
used to solve this integral equation where the contour of each
cylinder was approximated by a number of straight segments

each of length .
After pulse expansion of the charge density and then point

matching the discretized integral equation at the centroid of each
segment, we can express (1) and (2) in the matrix form

(4)

where

(5)

and are the unknown surface charge density coefficients.
The elements in (5) are evaluated at the centroid of segment

on and the infinite summations have been truncated to
cylinders. As will be shown in Section IV, this simple pulse-

expansion-point-match MM solution can provide very accurate
quasi-static calculations for complex composite materials.

The surface charge density of 3-D particles in an infinite lat-
tice can be computed similarly except for the use of triangular
patches in the moment method solution. The matrix equation in
this case has the same form as (4), except, among other things,
(5) becomes

(6)

where is the surface of theth flat triangular patch.
Lastly, once has been accurately computed for either 2-D

or 3-D lattices, the electric dipole momentof each particle can
be determined from the numerical solution to (4) as [7], [8]

2-D

3-D.
(7)

III. EFFECTIVE PERMITTIVITY COMPUTATION

A suitable macroscopic model must be chosen in order to
compute the effective permittivity of the infinite lattice. The
model applied here is that of an arbitrarily large dielectric cir-
cular cylinder (2-D) or dielectric sphere (3-D) of relative permit-
tivity illuminated by the same uniform electric field as in
the MM solution [7]. In both instances, the polarization vector
is uniform throughout the objects, which is the desired outcome
here (in the macroscopic sense) for the infinite lattices.

In the case of a 2-D infinite lattice, the effective relative per-
mittivity is related to the electric dipole momentof every
cylinder through the expression [9]

(8)

where is the cross-sectional area of one unit cell andis the
dipole moment of each cylinder. Similarly, for 3-D lattices
of particles illuminated by a uniform electric field is [7]

(9)

where is the volume of a unit cell.

IV. RESULTS AND DISCUSSION

Before presenting data illustrating the effects of particle
shape, we will first subject this solution methodology to verifica-
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Fig. 2. Computed" for three 2-D conducting particle shapes (circle, rounded square, and square cylinders). Also shown are theT -matrix results for circular
conducting cylinders [9]. The Maxwell/Maxwell Garnett (MG) results indicate the lower bound for the static permittivity of these three composite materials.

Fig. 3. Computed" for 3-D lattices of conducting spheres and conducting cubes. Our MM solution for conducting spheres is compared with data from [10].
Note that the vertical" scales for the sphere and cube data are much different.

tion. In Figs. 2 and 3, the computed for conducting circular
cylindersandspheres, respectively,arecomparedwithknownac-
curateresults(i.e.,oursemianalytical-matrixresults[7], [9]and
those of McPhedran,et al. [10]). In both cases, the background
is free space . The conducting circular cylinders in
Fig. 2 form a 2-D square lattice while the conducting spheres in
Fig. 3 form a 3-D simple cubic lattice. The excellent agreement
in these two comparisons serves as a verification of our method
in that the 2-D MM and -matrix results are very close for all
volumefractions(lessthanapproximately0.75%variation)while
the 3-D MM results generally vary by less than 2% from those
of McPhedran,et al.(at the maximal volume fraction the varia-
tion is 3.1%). The MM results were generated using up to
360 basis functions in 2-D and 1968 basis functions in 3-D while

the maximum number of particles truncated from the infinite lat-
tice, , was 177 in 2-D and 125 in 3-D. Actually, only within a
small range of close to the maximum do these “large”and
figures need to be employed. Otherwise, the required number of
basis functionsand the numberofparticles in the truncated lattice
can be much lower.

Also shown in Figs. 2 and 3 are for lattices of con-
ducting square cylinders (2-D) and cubes (3-D) computed using
our MM-based technique discussed earlier as well as the MG
predictions [11, Arts. 314 and 430]. The, and parame-
ters were unchanged from the previous 2-D example whereas for
the cube results up to 3758 basis and 729 particles
were needed near the maximal volume fraction (but consider-
ably smaller and otherwise).
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Fig. 4. Surface charge distribution on square conducting cylinders for various volume fractionf ranging from 0.1 to 0.9. The incident field hasE = 1 V/m
and� = 90 .

Fig. 5. Ratio of electric dipole moments in the direction ofE with mutual coupling (p ) and without mutual coupling (p ) included between particles.
The incident field hasE = 1 V/m and� = 90 .

Surprisingly, it is observed that for the square cylinders
in Fig. 2 nearly exactly coincides with the MG curve regard-
less of the volume fraction, which can reach a maximum of 1
for this lattice. In Fig. 3 it is observed that for the simple
cubic lattice of cubes is very close to the MG curve, though not
as close as the 2-D lattice of square cylinders. Lattices of dielec-
tric particles rather than conducting ones also produced similar
closeness in [8]. The MG formula is often used to predict
the static or quasi-static effective permittivity of spherical par-
ticles with little mutual interaction. However, it is also known
that the MG solution is the lower bound for the static effective
permittivity of any isotropic two-phase mixture given that the
inclusion permittivity is larger than that of the host [12].

The coincidence of the square cylinder data in Fig. 2 (and to
a lesser degree in the cube data of Fig. 3) might lead one to con-
clude that there is little mutual interaction between the particles.
This is not true, however. To illustrate this, shown in Fig. 4 is
the surface charge density on a square conducting cylinder over
a wide range of volume fraction. At low volume fraction (
0.1) the mutual interaction between the inclusions is small and
the edge effect is very prominent in Fig. 4 and largely dominates
the behavior. When the volume fraction becomes very large
( 0.9) and the mutual interaction is significant, however, the
interaction of edges (and corners in 3-D) between adjacent par-
ticles will combine to reduce these edge effects, which is clearly
shown in Fig. 4.
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In Fig. 5 we compute which is the ratio of the elec-
tric dipole moments of particles in a 2-D square lattice when
including mutual coupling between particles () and without
( ). This family of curves was generated for the class of
cylinders we define as the “rounded square” cylinder shown in
the key of Fig. 2. In Fig. 5, various ratios are chosen from
one to zero and the ratio is plotted up to the maximal

possible for that particle shape.
All of the curves in Fig. 5 enumerate how the particle dipole

moments are affected by mutual coupling as a function of
volume fraction. It is apparent from this figure that for circular
cylinders, the ratio starts at one and monotonically
increases as increases. Conversely, for square cylinders this
ratio always monotonically decreases from one. Therefore, we
see that the circular cross section always causes a “dielectric
enhancement,” which is a familiar conclusion, since the ratio

is greater than one for all volume fractions. For
the square cross section, however, there is only a decrease in

as increases. Consequently, rather that observing a
dielectric enhancement as with circular cylinders, we observe
for square cylinders a “dielectric reduction” due to mutual
coupling. This mutual coupling is so strong that the minimal
amount of polarization per unit volume is attained since in
Fig. 2, is equal to the MG results for 0.

For other rounded-square cylinder shapes, the data in Fig. 5
first show a decrease in at low and then an increase
as approaches its maximum. At certain, this ratio can be
unity (for example, see the 0.75 and 0.5 curves) indi-
cating that the dipole moment at these special volume fractions
is the same with or without mutual coupling. Nevertheless, we
have observed that the surface charge density is very different
with and without mutual coupling, as expected.

The last observation from Fig. 5 is thatreductionof the par-
ticle dipole moment with respect to the noninteraction solu-
tion is smaller for all rounded-square cylinders compared to the
square ( 0). Consequently, is then larger than the
MG solution, which is also illustrated in the 2/3 and 1
curves in Fig. 2, for example.

V. MEASUREMENT OFEFFECTIVE CONDUCTIVITY

The dielectric reduction afforded by interacting particle edges
and corners reported in the last section is an intriguing phe-
nomenon and one that, to our knowledge, has not been pre-
viously recorded in the literature. To provide additional evi-
dence for this phenomenon, we have constructed the measure-
ment apparatus shown in Fig. 6, which is used to measure the
relative quasi-static conductivity for a simple cubic lattice of
highly conductive cubes. (For quasi-static comparisons, the rel-
ative effective conductivity and permittivity will be equivalent
quantities since the electric scalar potential in both problems
satisfies Laplace’s equation with similar boundary conditions
[13].) The top and bottom plates shown in the photograph are
made from brass while the box is made from Lexan. When
the box is filled completely with a moderately conductive fluid
and with an applied voltage between the two brass plates, these
two surfaces imposeodd boundary conditions on the electro-
static scalar potential interior to the apparatus. Conversely, the

Fig. 6. Photograph of the conducting cube lattice apparatus for measuring
quasi-static effective conductivity. The upper and lower plates as well as the
cube are brass. The four-sided box is Lexan. For sample #2 shown above, the
measured volume fraction wasf = 0.1952� 0.0005, as listed in Table I.

TABLE I
MEASUREDVOLUME FRACTION f AND EFFECTIVE QUASI-STATIC RELATIVE

CONDUCTIVITY � AT 80 kHzFOR THECUBE APPARATUSSHOWN IN FIG. 6.
THE AVERAGES AND UNCERTAINTIES ARE THERESULT OFTEN SEPARATE

MEASUREMENTS FORf AND 16 SEPARATE MEASUREMENTS FOR�

* With f = V =V , thenjdf j = jdV =V j+ jV dV =V j wheredV =

V (dL=L+dW=W +dH=H); V = LWH; V is the brass cube volume,

andV is the empty Lexan box volume.

Fig. 7. Equivalent quasi-static circuit model for the experimental
measurements of� using the apparatus in Fig. 6. The effects of the
brass plates, brass cube, and Lexan box are modeled by the series combination
of C andR .

Lexan box—being essentially a nonconductor—imposeseven
boundary conditions on the potential. Consequently, the inte-
rior of the apparatus in Fig. 6 forms one-eighth of a unit cell in
a simple cubic lattice. Such an apparatus is similar to that used
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Fig. 8. Predicted quasi-static effective permittivity and measured effective conductivity for a simple cubic lattice of conducting cubes. The measurements were
performed at 80 kHz. Error bars indicate one standard deviation in both� and volume fraction.

by McKenzieet al. in their measurements for lattices of spheres
[14].

Eleven Lexan boxes were constructed, each of different size
to vary the volume fraction of the lattice, while using only one
high-precision brass cube. The resulting measured volume frac-
tions of the 11 samples are listed in Table I. Highly precise ma-
chining of the brass cube and plate faces as well as the Lexan
boxes (within a few thousandths of an inch) was necessary to
achieve the small deviations in volume fraction as shown in this
table (as well as achieving a watertight fit). For example, the
brass cube was found to have dimensions 1.9850.0006 in,
1.984 0.0006 in, and 1.985 0.0013 in, which were obtained
from ten measurements for each of the three dimensions.

The equivalent low-frequency circuit model for this apparatus
is shown in Fig. 7. When filled with water and the function gen-
erator attached to the two plates, the apparatus electrically ap-
pears as a capacitor in series with a resistance . For our
measurements, the sinusoidal frequency 80 kHz was chosen to
be high enough that so that there was
no appreciable phase shift in and . These capacitive effects
were actually only noticeable at high volume fraction where the
top of the cube was very close to the plate. Such a frequency
also avoids possible frequency variations in as reported in
[14] and [15].

The effective conductivity of the lattice is determined from
the ratio of two measurements of . In the first case, the cube
is removed from the box, the box is filled with tap water, and
the voltage is measured. The effective resistance can
be easily computed as

(10)

Next, the cube is inserted, the box is filled again with tap water,
and the new effective load resistance is computed from
(10). Forming the ratio of these quantities yields the effective

conductivity of the lattice of conducting cubes (relative to the
conductivity of the fluid inside the box) as

(11)

The results of these conductivity measurements are listed in
Table I. The average and standard deviation of these measure-
ments are the result of 16 measurements each separated by a dis-
assembly of the apparatus and using differentvalues ranging
from 50 to 500 .

Additionally, these measured are plotted in Fig. 8. Two
other curves are also shown in this figure. These are the
predicted using our MM solution and the MG solution as shown
previously in Fig. 3. The curve of our computed passes
through all of the error boxes centered at each measurement
point for , thus confirming the accuracy of our method for
computing effective permittivity for lattices of complex-shaped
particles described in Sections II and III.

VI. CONCLUSION

The effects of inclusion shape on the quasi-static effective
permittivity of periodic composites containing complex-shaped
conducting particles have been investigated using a simple and
accurate moment method based technique. The numerical re-
sults showed that, although large mutual interaction exists be-
tween particles, lattices of square cylinders (2-D), and cubes
(3-D) produce nearly the minimal amount of polarization per
unit volume. Consequently, such complex composite materials
can be designed with good accuracy using the simple MG for-
mula even though there may exist extremely large coupling be-
tween the inclusions. To our knowledge, this interesting phe-
nomenon has not been previously reported in the literature.

This methodology could be applied to microwave structures
(high dielectric capacitors, substrates) where the quasi-static ef-
fective permittivity of composites must be accurately known.
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Our analysis was verified experimentally with measurements of
the effective conductivity from an apparatus that simulates an
infinite simple cubic lattice of highly conducting cubes.
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